Millimeter-wave (mmWave) communication systems are coming into widespread use, specifically because the RF spectrum is highly congested, and we need more of it to deal with increasing data demand. MmWave helps both with new spectrum allocations, and efficient spectrum re-use. MmWave (strictly between 30GHz to 300GHz, but more loosely referred to as frequencies above about 20GHz) is characterized by wider bandwidths, higher signal attenuation, shorter range and narrower beamwidths than at lower frequencies. Advances in semiconductor technology have helped to bring down the price of mmWave transceivers and filters, as well as the processors to transport and switch the increased volumes of data. Also, the shorter wavelength means that antennas will be physically smaller than in the lower frequency bands.
When monitoring RF spectrum on a military test range, spectrum usage, location and occupancy might be the prime concern. So, when observing the use of a mmWave transmitter, for example a fire control radar, the monitoring receiver would ideally be positioned directly in the path of the transmission. This again is because of the narrow beamwidths involved.
As mmWave communication systems become more prevalent, the requirement for a flexible spectrum monitoring solution, with high-fidelity receivers spanning up to 40GHz, increases. The RFeye Node 100-40, gives customers the peace of mind that any signal up to 40GHz will be covered. Crucially, it is a sound and future-proofed investment for effective 24/7 spectrum management.